- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Su, Qiong (3)
-
Lin, Yun (2)
-
Fu, Rong (1)
-
Gu, Yu (1)
-
Hsieh, Jen-Shan (1)
-
Jiang, Jonathan H (1)
-
Karthikeyan, R. (1)
-
Lavallee, Michael (1)
-
Lee, Kee Wei (1)
-
McFarquhar, Greg M. (1)
-
Park, Edward (1)
-
Ranganathan, Shyam (1)
-
Rohila, Jai S. (1)
-
Wang, Jingyu (1)
-
Wang, Yuan (1)
-
Zhang, Renyi (1)
-
Zhang, Tianhao (1)
-
Zhao, Lijun (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Lin, Yun; Wang, Yuan; Hsieh, Jen-Shan; Jiang, Jonathan H; Su, Qiong; Zhao, Lijun; Lavallee, Michael; Zhang, Renyi (, Atmospheric Chemistry and Physics)Abstract. Intense tropical cyclones (TCs) can cause catastrophic damage to coastal regions after landfall. Recent studies have linked the devastation associated with TCs to climate change, which induces favorable conditions, such as increasing sea-surface temperature, to supercharge storms. Meanwhile, environmental factors, such as atmospheric aerosols, also impact the development and intensity of TCs, but their effects remain poorly understood, particularly coupled with ocean dynamics. Here, we quantitatively assess the aerosol microphysical effects and aerosol-modified ocean feedbacks during Hurricane Katrina using a cloud-resolving atmosphere–ocean coupled model: Weather Research and Forecasting (WRF) in conjunction with the Regional Ocean Model System (ROMS). Our model simulations reveal that an enhanced storm destructive power, as reflected by larger integrated kinetic energy, heavier precipitation, and higher sea-level rise, is linked to the combined effects of aerosols and ocean feedbacks. These effects further result in an expansion of the storm circulation with a reduced intensity because of a decreasing moist static energy supply and enhancing vorticity Rossby wave outward propagation. Both accumulated precipitation and storm surge are enhanced during the mature stage of the TC with elevated aerosol concentrations, implying exacerbated flood damage over the polluted coastal region. The ocean feedback following the aerosol microphysical effects tends to mitigate the vertical mixing cooling in the ocean mixing layer and offsets the aerosol-induced storm weakening by enhancing cloud and precipitation near the eyewall region. Our results highlight the importance of accounting for the effects of aerosol microphysics and ocean-coupling feedbacks to improve the forecast of TC destructiveness, particularly near the heavily polluted coastal regions along the Gulf of Mexico.more » « less
-
Wang, Jingyu; Lin, Yun; McFarquhar, Greg M.; Park, Edward; Gu, Yu; Su, Qiong; Fu, Rong; Lee, Kee Wei; Zhang, Tianhao (, Geophysical Research Letters)Abstract Satellite‐based post‐tornado assessments have been widely used for the detection of tornado tracks, which heavily relies on the identification of vegetation changes through observations at visible and near‐infrared channels. During the deadly 10–11 December 2021 tornado outbreak, a series of violent tornadoes first touched down over northeastern Arkansas, an area dominated by cropland with rare vegetation coverage in winter. Through the examination of Moderate Resolution Imaging Spectroradiometer multi‐spectral observations, this study reveals significant scars on shortwave infrared channels over this region, but none are captured by visible and near‐infrared channels. The dominant soil type is aquert (one of vertisols), whose high clay content well preserves the severe changes in soil structure during the tornado passage, when the topmost soil layer was removed and underlying soil with higher moisture content was exposed to the air. This study suggests a quick post‐tornado assessment method over less vegetated area by using shortwave infrared channels.more » « less
An official website of the United States government
